Table of contents

Table of contents

Table of contents

Checklist.....ccesiiiiiiiiiiiirnnsiininnnininieinn. 4
Table of contents........ccvveveeeiiiiiiiiiineeennnesssinnenieeennee. 5
1. Preface and didactic considerations..............c...... 6
1.1 Preparation and procurement of materials....... 7
1.2 What is Arduino?.......c.ceevviiiiniiiienieee e 9
1.3 Development - Arduino, Funduino, Genuino.....9
2. Hardware and Software..........cceeeveenniiniinnnennenns 11
2.1 HAardWare....oooeeeeiieeeeeeeiiieee et e e eareee e 11
2.1.1 The microcontroller........ccccevveeeenieerinneenen. 11
2.1.2 Accessories - The Breadboard...................... 12
2.1.3 Accessories - LED.......ccoocueeieirriiniieeeeeee 13
2.1.4 Accessories - Resistors........oooeveiiuieieeieecees 14
2.1.5 Accessories - Sensors and Actuators............ 15
2.2 SOFtWATrE ... e 16
2.2. 1 Installation......c.ccceevcieriniieeeeeeeeiiieeeeee e, 16
2.2.2 Setup of the Arduino software..................... 16
2.2.3 USB driver installation..........cccocceeevrivinnneeen. 18
2.2.4 Adding Libraries........cccoeuveeerieeeiiniciiineieeenn. 19
2.3 Alternative Software........cccceevvveeeeeiiicnnineeen, 20
2.3.1 Open Roberta.......cccceevieeeivreeenieeenieeeeeeenn 20
2.3.2 ENglishu.cccciiiiiiei e 20
3. Programming.......ccceceeeeiinnnsnieessiinsssrnessnenescrnnssnns 21
3.1 Basic structure for a Sketch.........cccovvviiinnneeen. 21
3.2 Common sources of errors..........ccceeeeeevvvvnnnen. 22
3.3 Structure of the instructions............cccccvvvveeen. 22
4. Practical guides.......covvreeiiirinnniiiiineessiiinnennnneeen, 24
4.1 ADblinKiNg LED.......coovcieeiiiieeriiee e 24
4.2 The alternating blinker.........cccccceeeeeeeiiennnl. 26
4.3 Pulsating @ LED.....cccoccviiieiieiiieee e 27
4.4 Simultaneous light and sound signal............... 29
4.5 Activating a LED with a button...........cccccc...... 30
4.6 Programming a traffic light............c.ccocceiiee. 32

4.7 Controlling a colored LED (RGB)...................... 36

4.8 MOtION SENSON.....ueieiiiiiiiiiiaeeaeeeeeeee e eeeeeenaas 40
4.9 Measuring Light Intensity.......ccccccevviveininnnee 42
4.10 Rotary control - Rotary potentiometer.......... 45
4.11 Measuring temperature with TMP36 sensor.47
4.12 Measuring temperature with NTC sensor.....51
4.13 Measuring distance (Ultrasonic).........cc.c....... 56
4.14 Infrared remote control........cccccecveeeecvveernnnns 59
4.15 Control servo motor.......ccccovvvcieeeeiiineeeeeeenn, 62
4.16 LCD display with I2C interface........ccoeeveennee... 64
4.17 USING FelayS....ccceeeccuvrieeeeeiiiieeeeeeeeeeeeeeee e e 67
4.18 Driving a stepper MotOr........ceevvveereereeeevennnnn. 69
4.19 Measuring humidity......ccccccceeviieeeeiiiniiiiiee 72
4.20 Detecting water droplets and rain................. 75
4.21 The JOYStICK...covriieieiiieieecree e, 78
4.22 Using RFID chip cards.......cccocveeeeieeeeeeenennnnn.. 87
4.23 The Keypad......cccceeeeevcviieeeeeiiieeeeeeeieeee e 92
4.24 Speaker / generating sounds and music........ 96

4.25 Measuring air quality - MQ-135 gas sensor.101

4.26 Using a tilt SeNSOr........ccoevvvevevciiiiniieeeeeennn, 106
4.27 Four-digit 7-segment display.........ccccceeeeeenn. 108
4.28 Colorful lights - WS2812 LED............cccc....... 110
4.29 Gyroscope and accelerometer.................... 115
4.30 Light barrier......cccvvieeinieeeieeeeee e 119
4.31 Transistor and electric motor...................... 123
4.32 Fan Control Project........ccccevvveeeiieieniieneennn. 125
4.33 Data transfer via Bluetooth...........ccc........... 127
5. Code reference.........cciiiiiiieeeeeneisiiicennninnnennnnnee 133
5.1 FUNCHONS....eeeiiiiieieiiiieee e 134
5.2 Variables........ooceviiiiiii 134
5.3 StrUCtUIE. .., 135
5.4 Libraries....cccouvceeeiei e 136
6. Sketches and notes........ccccccevieiiirieenrennnnnniiiinnnes 136

1. Preface and didactic considerations

1. Preface and didactic considerations

Getting started is always difficult - but not with this guide for Arduino. It is intended to serve as a foundation for
learning the Arduino platform and provide beginners with a didactically sound, simple, interesting, and closely
guided introduction to Arduino topics. Competence acquisition through this booklet covers various areas of
microcontroller programming so broadly that the reader will be enabled to independently delve into advanced

topics. This includes learning additional programming possibilities or using additional modules.

This work was developed over a period of almost ten years in parallel with technical training for teachers and
classroom use with students of various age groups. Over the years, it has been evaluated, updated, and

expanded multiple times. The result is a workbook that can be used in conjunction with teaching or courses.

Use in the classroom

The didactic concept of this guide is based on the learners working largely independently with the instructions
and corresponding electronic components. The course instructor provides the necessary materials for each
instruction and then only offers guidance to learners, for example, to support individual participants or small
groups. Especially in the initial phase, learners may struggle to identify errors in electronics, programming
syntax, or program logic on their own. However, learners will quickly develop a sense of problem-solving in
these areas. It is important in this regard to read the theoretical introduction before the practical exercises to

avoid failure due to lack of basic knowledge during later practical tasks.

The open working method achieves optimal and effective learning time since everyone can work and learn at
their own pace. Furthermore, with the completion of each instruction, a project-like group dynamic quickly
develops, as each individual works independently but all pursue the same goal. Mutual explanation and
assistance support the learning process of all participants and promote teamwork.

In many work phases, there are opportunities for differentiation by encouraging students to expand upon the

examples provided or creatively incorporate their own ideas into solving the task.

1. Preface and didactic considerations

1.1 Preparation and procurement of materials

The following materials are required for the exercises in this booklet:

01. Microcontroller 02. Breadboard 03. Jumper Wire
(UNO MEGA /NANO) Male / Male
B o //(
04. Jumper Wire 05. Jumper Wire 06. Servo motor
Female / Female Female / Male MG90S or SG90
07. 20 LEDS each 08. RGB-LED 09. Infrared transmitter and receiver
(green, red, yellow, blue, white) E
& P
N .*: -
AR =
L, 8 M*\ o Z
10. Four-digit 7-segment display 11. Relay module

13. Stepper motor with driver
board

16. RFID-KIT 17. 20 Resistors each 18. Ultrasonic sensor
(100,200,300,1K,10K Ohm)

1. Preface and didactic considerations

19. Bluetooth module HC-05

20. Tilt Sensor

21. Motion detector

HC-SR501 or SR602

22. Temperature sensor TMP36

23. Photoresisto

24. Rotary potentiometer

25. Button (big)

©

26. Button (small)

»

27. Piezospeaker

S

28.1’CLCD

29. Diode

/

30. Speaker

32. WS2812 LED module with 8
LEDs

34. NTC-temperature sensor

37. Light barrier

1. Preface and didactic considerations

1.2 What is Arduino?

Arduino is an open-source electronics prototyping platform for flexible, easy-to-use hardware and software in
the field of microcontroller programming. It is suitable for realizing exciting and spectacular projects in a short
amount of time. Many of these projects can be found under the term "Arduino" on platforms like YouTube. It is
primarily used by artists, designers, tinkerers, and hobbyists to bring creative ideas to life. However, Arduino
development environments are also increasingly being used in schools, colleges, and universities to provide
learners with a creative, exciting, and above all, easy entry point into the field of microcontroller programming.

Topics such as "automation technology," "robotics," etc., can also be explored using the Arduino development

environment.

1.3 Development - Arduino, Funduino, Genuino

The story of Arduino began in 2005 when the two "tinkerers" Massimo Banzi and David Cuartielles developed
their first microcontroller board, and programmer David Mellis created the corresponding syntax, which is
based on the programming languages C++, C, and Assembler. The project is licensed under Creative Commons,
making Arduino largely an open-source platform, which significantly facilitated its dissemination and

development.

Over the years, the founders of the Arduino platform (Arduino LLC) and the producers of the official Arduino
boards (Arduino S.r.I) became embroiled in a dispute as both groups claimed the brand name "Arduino" for
themselves. At that time, it could not be definitively determined which party was the rightful owner of the
trademark, leading to a legal dispute with far-reaching consequences. The online platform split into several
internet presences (www.arduino.org, www.arduino.cc), with both parties distributing their own
microcontrollers, both under the same brand name "Arduino." In 2015, founding member M. Banzi introduced
the brand "Genuino." Genuino was henceforth the designation for microcontroller boards intended to be sold
outside the United States. It was not until the World Maker Faire in 2016 that Arduino LLC and Arduino S.r.I
announced the merger of the warring parties under a newly formed Arduino Holding. Over the years, due to
uncertainty about the name rights, many new brands and names of other manufacturers of Arduino-compatible
microcontroller boards emerged. Based on the open-source foundation, while the boards are technically
identical in most cases, they are not allowed to be labeled with the name "Arduino." These boards are then
referred to as "Arduino clones" or "Arduino-compatible." For example, the German company Funduino GmbH
emerged during this legally problematic period. The company developed extensive teaching materials and
learning kits for the educational sector as early as its inception in 2010. As it was not possible to establish
constructive cooperation with Arduino, the company has since been producing its own Arduino-compatible

microcontroller boards.

1. Preface and didactic considerations

Today, the term Arduino represents the definition of flexible, easy-to-use hardware and software in the field of
microcontroller programming. Arduino is ideally suited for realizing spectacular projects. Due to its low

acquisition costs, practical development environment, resulting didactic value, and nearly endless combination
possibilities of countless sensors and actuators, the field of microcontroller programming is increasingly making

its way into the global education sector.

10

2. Hardware and Software

2. Hardware and Software

The term Arduino is commonly used interchangeably to refer to both the different Arduino boards (hardware)
as well as the programming environment (software).

2.1 Hardware

In addition to the microcontroller, sensors, and actuators, the basis for quick and flexible experimental setups
requires jumper wires in conjunction with a breadboard. This saves time-consuming soldering work.

Furthermore, LEDs are very suitable for verifying the signal output of the board.
2.1.1 The microcontroller

The "Arduino" is a type of microcontroller board
(hereinafter referred to as "board"). It is a printed circuit

board (PCB) with a variety of electronic components

surrounding the actual microcontroller chip. Along the

edge of the board, there are many slots (called pins) where R
various modules such as sensors and actuators can be

connected. These include switches, LEDs, ultrasonic

sensors, temperature sensors, rotary knobs, displays,

motors, servos, etc.

There are many different versions of microcontroller boards that can be used with the Arduino software. These
include both many different large and small boards with the official "Arduino" designation as well as a variety of
often cheaper Arduino-compatible boards. The boards differ only in small details, such as the number of digital

pins or the amount of memory.

This guide was created using an Arduino-compatible UNO board from the Funduino brand. However, any

Arduino-compatible controller can be used with this guide.

11

2. Hardware and Software

The following three boards are the most well-known microcontroller boards that can be used with Arduino

software: UNO, NANO, and MEGA.

2 %€9 % Funduino._

12 10 9 8

Legend:

1. USB connection 5. Power-ON indicator light 9. GND (Ground or ,,-“)

2. Reset button 6. Microcontroller 10. 5V output from the voltage regulator
3. GND (Ground or ,-“) 7. Analog inputs 11. 3,3V output from the voltage regulator
4. Digital inputs and outputs 8. External power supply per pin (Vin) 12. External power supply (7-12V)

2.1.2 Accessories - The Breadboard

A breadboard, also known as a "prototyping
board," is a useful tool for building circuits
without the need for soldering. In a

breadboard, multiple contacts are connected

2. Hardware and Software

to each other. Therefore, many connections can be made at these points without needing to be soldered or

screwed together.

There are many different versions of breadboards available,
ranging from large to small, colored to transparent. The
wiring inside the breadboard can also vary. Generally, the

contacts are connected as shown in the image. The outer

lines are continuously connected to each other, and the
small lines in the inner area are each connected to five slots
vertically. The small inner segments are suitable for detailed

constructions, while the outer lines are typically used for

distributing power.

There are also breadboards where the outer contacts are subdivided in the middle or even multiple times.
Therefore, before starting work, it is advisable to check how the available breadboard is connected. Often, the
outer contacts are marked with red and blue lines, indicating whether the contacts are connected in a

continuous line or not.

2.1.3 Accessories - LED

With LEDs, you can quickly test the results of a project. Therefore, they are useful for almost all Arduino

projects.
The most important information about light-emitting diodes (LEDs): . ‘-I, :':__
“Qg 1
e The current can only flow through the LED in one direction. - .-, \"K\\ : "
Therefore, it must be connected correctly. An LED has a longer and ﬁ,,g:? :Li &
a shorter contact. The longer contact is "+" and the shorter one is @

mnn

* An LED is designed for a specific current. If this current is lower, the LED will glow less brightly or not at
all. If the current is exceeded, the LED will quickly burn out and become hot at the contacts (Caution,
risk of burns!). Excessive current may occur if the maximum voltage for the LED is exceeded. For
example, if you connect an LED directly to the 5V output, it will be immediately damaged. Therefore,
when using LEDs with Arduino boards, always use a current-limiting resistor.

* Typical voltage values for LED colors: Blue: 3.1V, White: 3.3V, Green: 3.7V, Yellow: 2.2V, Red: 2.1V. The

exact specified voltage can be found in the datasheet for each LED.

13

2. Hardware and Software

* Unbinding recommendation for resistors when using the following LED colors at the 5V pins of the

microcontroller:

LED-color: white red yellow green blue infrared-LED

Resistor: 100 Ohm 200 Ohm 200 Ohm 100 Ohm 100 Ohm 100 Ohm

Smart LEDs - NeoPixel

In addition to standard LEDs, there is also the "luxury version" in the
form of WS2811, WS2812, and WS2812B LEDs. These LEDs are often
referred to as NeoPixels. They are colored (RGB) LEDs with an
integrated chip that controls the RGB LEDs. The advantage is that the
LED is controlled with only three instead of four contacts, and many
LEDs can be daisy-chained together without the need for additional

separate cables. Pre-made WS2812 LED combinations are often found

in the form of LED rings or colored LED light strips. The image shows a

WS2812 ring where the LEDs are controlled with only three cables in rainbow colors.

2.1.4 Accessories - Resistors

An electrical resistor is a passive electronic component commonly integrated into circuits, particularly in the
field of microcontrollers. Resistors are used to limit electric current, thereby protecting components in the
circuit. For example, typical light-emitting diodes (LEDs) have a specified current of 20mA. If much more current
flows in a circuit, the LED can be damaged.

Resistors can also divide electric current in a circuit. This makes it possible, for example, to read sensor values
from sensors that change their electrical conductivity depending on the value being measured.

There are many different types of resistors because an individual resistance value is needed depending on the
application. Selecting the appropriate resistor can be challenging, so the required resistance value is usually

specified in the instructions.

IR el
R T T

14

2. Hardware and Software

2.1.5 Accessories - Sensors and Actuators

The possibilities for using sensors or actuators with the Arduino microcontroller are virtually endless. This is

because the Arduino development environment is not a closed system where only prefabricated modules can

be used. On the contrary, countless electronic modules from electronics stores can be used with Arduino in

some way, such as reading digital or analog values. Here is an example of a (tiny) selection of typical modules

that can be used in combination with Arduino microcontrollers.

(S) = sensors, (A) = Actuator, (C) = Combined module with various functions

1. Moisture (S)

. Distance (Ultrasonic) (S)
. Motion (S)

A W N

. Air humidity (S)

. Air pressure (S)

. Current strength (S)
. GPS receiver (S)

. Potentiometer position (S)

O 00 N o u

. Temperature (S)

10. Button press (S)
11. Droplet (S)

12. Slider (S)
1 2
8 9
- ¢
15 16

13
14
15

16.
17.
18.
19.
20.
21.
22.
23.
24.

17

LTilE (S)

. Sound level (S)

. Tilt / Acceleration (S)
Electric voltage (S)
Color detection (S)
Infrared signals (S)
Luminance (S)

GSM mobile communication (C)
pH value (S)
Magnetic fields (S)
Flames / Fire (S)

Heart rate (S)

4

P

)
'S;:?.
4
Ve

11

18

15

25.
26.
27.
28.
29.

30

31.

32

33.
34.
35.

RFID - Radio frequency code (C)
Water level / Level (S)

Gas (CO, alcohol, etc.) (S)
Fingerprint (C)

Impacts / Vibrations (S)

. Microswitch (S)

Light barriers (S)

. Vibrations (S)

UV light (S)

Fine dust (S)

Distance (Infrared) (S)

2. Hardware and Software

2.2 Software

The software used to program the microcontroller is open-source software and can be downloaded for free
from www.arduino.cc. In this "Arduino software," you write small programs called "sketches" that the
microcontroller will later execute. These sketches are then transferred to the microcontroller via USB cable.

How this works is covered in the "Programming" section.

2.2.1 Installation

Now, the Arduino software and the USB driver for the Arduino board need to be installed one after the other.

2.2.2 Setup of the Arduino software

The latest version of the Arduino software can be downloaded from the website www.arduino.cc. After
downloading the program file, the installation begins. If the installation does not start automatically, it must be
started by double-clicking on the downloaded program. During this installation, no Arduino board should be
connected to the computer.

After successful installation, open the Arduino software folder and start the program with the file

"arduino.exe".
There are two important settings to consider in the software, which must be made in the "Tools" section.

a) The board to be connected

& Funduino | Arduino IDE 2.3.2 = a X

File Edit Sketch Teos Help

to the computer must be At Foren « |-

Archive Sketch
Funduino + Arduina Uno
n H n o ek
selected. The "Funduino Uno J| ‘s, A
Serial Monitor Strg + Umsc! M
Ard D nove or Diecimila
. B 2 St Arduina Duemilanove or Diecimi
board is recognized here as 3 Ardsire Nano
g Fimware Updater .
Arduino Mega or Mega 2560
" . M 5 Upload SSL Root Certificates Ard M ADK
Arduino Uno," and the 6 Bt Antina o B s, g e : v
Arduino Lesnardo
7 Port: *COM14" 4 » Arduino AVR Boards g

Arduino Leonardo ETH

"Funduino MEGA2560" board - R Arkino o
Programsmer i Arduine Esplora
. . . ie
is recognized as "Arduino Bum Sostissder Airo M
Arduino Ethernet
MEGA 2560." Arduiro Fio

Arduina BT
LilyPad Arduino USB
LilyPad Arduino
Arduine Pro-or Pro Mini
Arduina NG o older
Arduine Rabot Control
Arduina Robot Motor
Arduine Gemma
Adafruit Circuit Playground
Arduina Yin Mini

i Incustral 107
Linino One

Arduino Uno WiFi

16

2. Hardware and Software

b) The correct "Serial Port" must be selected. This is important so that the PC can identify which USB port the

board is connected to. However, the selection is only possible if the driver is correctly installed and the

microcontroller is connected.

In software versions from version V2.0
onwards, microcontrollers and ports are

often automatically detected.

If it is not clear which port belongs to
the respective connected
microcontroller, this can be checked
with the following procedure: Without
the Arduino microcontroller connected
to the PC, click on 'Port' in the 'Tools'
submenu in the software. There will
already be one or more ports visible,
such as 'COM1', 'COM4', 'COM7' ... The
number of ports displayed is
independent of the number of USB
ports on the computer used. If the
board is later correctly installed and
connected, another port will be

displayed here.

& Funduino | Arduing IDE 2.3.2 — a X
File Edit Sketch Tools Help

Funduino

1

Auto Format
Archive Sketch

Manage Libraries...

Serial Monitor

Serial Plotter

Firmware Updater

Upload SSL Reot Certificates
Board: "Arduine Uno”

Port: “COM14"

Serial ports

Get Board Info COM14 (Arduino Uno)

[T RN - JT, [SRV N}

Brogrammer com?

Burn Bootloader Coms

Ln10,Col 1 Arduino UnoonCOM14 Q B

& Funduino | Arduino IDE 2

File Edit Sketch Tog

1 Arduine Uno
coM14

p Unknown

Select other board and port..

1
J

Ln10,Col 1 ArduinoUnconCOM14 0 B8

17

2. Hardware and Software

2.2.3 USB driver installation

Ideally, when installing drivers for Arduino boards or Arduino-compatible boards with original ATMEL chips
(such as UNO or MEGA from Arduino or Funduino), the microcontroller board is connected to the PC and
automatically installed.

However, depending on the system, the driver may not always be automatically detected and installed. In that
case, you should manually select the driver during the installation process. It is located in the Arduino program
folder in the "Drivers" subfolder.

Double check: In the Windows Control Panel of the computer, you can find the "Device Manager". After a
successful installation, the Arduino board will be listed here. If the installation was not successful, either
nothing special will be found here, or there will be an unknown USB device with a yellow exclamation mark. In
this case, click on the unknown device in the Device Manager, select the "Update Driver" option, and then

follow the on-screen instructions.

In addition to Arduino boards or Arduino-compatible boards, there are now many other microcontroller boards
that are compatible with the Arduino development environment but are based on completely different
microcontrollers. Therefore, these drivers are not included in the Arduino software and must be installed
separately.

The most well-known chipset often used in the cheapest boards is the "CH340" USB chipset. This chipset is used
in a variety of UNO, MEGA, NANO, and similar microcontroller boards.

To install the drivers, you need to download the appropriate drivers from the manufacturer or retailer. Usually,
you need to pay attention to whether you are using Windows, Mac, or Linux. During the subsequent

installation, administrative rights are typically required to ensure that the driver is installed correctly.
Practical Tip: Before working with the microcontroller, check if installing external drivers is possible on the

desired computer. This is especially important in larger IT rooms with permission settings, etc., to avoid

unwanted delays.

18

2. Hardware and Software

2.2.4 Adding Libraries

A library can be useful for some projects as

it can simplify programming. By using a 2 + o
library, functions can be accessed in a .
sketch without having to be completely

written out in the sketch. In the practical

part of this guide, references to such 1

libraries are made multiple times. These

libraries need to be added to the Arduino

software as needed in order to be used.

LCDGraph by Jothar
atss

There are various ways to add a library to ptraeg e KC

Ln 10, Cal 1 Arduino Unaon COM14 (31 B

the Arduino software. The easiest way is by

clicking on the book icon (1) on the left side of the software called "Library Manager".

In the upper area (2), the desired library can be searched for and viewed using the search field. The results
display the name (3) of the library, as well as the author (4). Below that is a brief description of the library (5).
By clicking the "INSTALL" button (6), the library will be downloaded and installed. When installing program
libraries, example sketches are simultaneously added to the Arduino software. These examples can be found

under "File > Examples" and provide a good insight into the various functions of the respective library.

Alternatively, libraries can be searched for and included in the Arduino software under "Sketch > Include Library

> Manage Libraries...".

There is also the option to download a library from an external site and include it using the ".ZIP Library..."
function. For those who want to get a detailed overview of the functions of a library, the corresponding files can
be searched for on the hard drive in the Arduino directory and then opened with an editor or with the Arduino
software. A library typically consists of at least two files with the file extensions ".h" and ".cpp". The file with
the ".h" extension contains or describes the functions, while the file with the ".cpp" extension contains the

actual source code.

It is also possible to create your own libraries, but this is only advisable for advanced users.

19

2. Hardware and Software

2.3 Alternative Software

Besides the Arduino software, there are other ways to program Arduino boards. These are often based on
programming through a graphical programming interface, which is particularly known in the education sector

through "Scratch" or programming LEGO Mindstorm.

In this type of programming, all elements are essentially assembled by drag-and-drop. The elements are
represented by their intuitively understandable depiction, such as programming commands through block
images. This type of programming particularly motivates students, as typing code is often initially considered
complicated. Another advantage is that by eliminating the "typing" of program codes, syntax errors cannot

creep in. However, a disadvantage is that the "real" writing of program codes cannot be learned in this way.

2.3.1 Open Roberta

In the German-speaking region, "OpenRoberta" (https://lab.open-roberta.org) is very well-known. With
OpenRoberta, not only Arduino boards, but also many other microcontrollers and robots can be programmed.
It is therefore cross-hardware functional and particularly suitable for educational institutions to teach
programming to students.

For programming Arduino boards, there is the PROSEANNETOprog ROBOT.CONEIGURATION

ol

"NEPO4ARDUINQ" section in the Openroberta LAB. In the
Openroberta LAB, an additional program is required for the
USB connection between the browser and the
microcontroller. The installation information is somewhat
hidden. You can find it by clicking through the following
menu path:

help — general help — Set Up - NEPO4ARDUINO

The image shows a program used to make an LED blink on

the Arduino board. In this case, the Openroberta visual programming interface was used.
2.3.2 English

In the English-speaking world, the most well-known visual programming platforms are Mblock
(http://www.mblock.cc) and S4A "Scratch for Arduino” (http://s4a.cat). S4A is popular because it is very similar

to the regular "Scratch," which is already established in many schools for computer science classes.

20

3. Programming

3. Programming

To make an Arduino microcontroller do what the user demands, a small program is written using the Arduino
software. This program is referred to as a "Sketch" in the Arduino development environment. Once a Sketch is
completed and successfully verified in the Arduino software, it is loaded onto the memory of the

microcontroller and executed immediately.

3.1 Basic structure for a Sketch

A sketch can initially be divided into three sections, as illustrated here in color.

int LED=9; Section 1
int brightness=0;

int x=5;

void setup() Section 2

pinMode (LED, OUTPUT);

void loop() Section 3

analogwWrite(LED, brightness);

brightness= brightness + Xx;

delay(25);

if(brightness ==0 || brightness == 255)

X = -X;

}

}
3.1.1 Brightness 1 - Naming variables
In the first section, elements of the program are named. For example, variables are defined there, or so-called
program libraries are loaded. This part is not mandatory for every sketch.
3.1.2 Section 2 - Setup
The second section is called "Setup". The Setup is executed by the board only once and is mandatory for every
sketch, even if no entries are made in this section. In the Setup, for example, it is determined which pin (slot for
cables) on the microcontroller board is an output or an input. Defined as an output, a voltage can be output at
the respective pin (for example, to light up an LED at this pin), and defined as an input, a voltage can be read at
the pin (for example, the voltage values of a sensor).
3.1.3 Section 3 - Loop
The "Loop" section is continuously repeated by the board and can therefore be referred to as the main part of
the sketch. The microcontroller processes the sketch once completely until the end and then starts again at the
beginning of the Loop section. Advanced users may outsource individual program sections to subroutines,
which are then only called by the "Loop" and may also pass data for further processing. These outsourcings are

not further discussed in this guide.

21

3. Programming

3.2 Common sources of errors

When programming microcontrollers, errors can occur
at many points. The most common "beginner
mistakes" when working with Arduino software are the

following two:

1) The board is not installed correctly or the wrong

board is selected. When uploading the sketch, an error

message is displayed in the lower part of the software,
which looks something like the one shown on the
right. The error message then contains a note "not in

Ln 10, Col 18 lega or Mega 25600n COM14 (31 B

sync".

2) There is an error in the sketch. For example, a word, ¥

a variable, or a command is misspelled, or a curly brace 1
2 void setup() {

3 pinMode(13, OUTPUT);

4

5

or semicolon is missing. In the example on the left, the
curly brace that initiates the Loop section is missing. ;

The error message often starts with "expected...". This 10

means that the program is expecting something that is 13

not yet present.

re '} token x
COPY ERROR MESSAGES

Ln 12, Col 1 ArduinoUnoon COMI4 (22 B

3.3 Structure of the instructions

The structure of the following instructions is very similar.

1. The instructions start with a description of the task to be completed in the guide. Additionally, if necessary,
there is an explanation of the components used.

2. Before each respective sketch, there is a diagram illustrating the wiring of all modules.

3. The printed sketches in the following instructions consist simultaneously of program code and a description

explaining the effect of the respective program code.
In the left section, the program code is printed in black or colored font, while in the right section, behind the

"//" symbol in gray font, the explanation of the program code is provided. The explanations in gray font may be

entered into the Arduino software and do not affect the execution of the sketch.

22

3. Programming

Example:

Left: Programmcode in bold font

void setup()

{
pinMode (13, OUTPUT);
}

void loop()
{

digitalwrite(13, HIGH);
delay(1000);
digitalwrite(13, LOW);
delay(1000);

}

Right: Explanations of the program code

// Here begins the setup.

// Here begins a program section.
// Pin 13 should be an output.
// Here ends a program section.

// Here begins the main program.

// Program section begins.

// Turn on the voltage at Pin 13. (LED on)
// Wait for 1000 milliseconds (one second).
// Turn off the voltage at Pin 13. (LED off)
// Wait for 1000 milliseconds (one second).
// Program section ends.

By following this system, one can quickly understand and apply the program code independently. Afterward,

individuals can familiarize themselves with additional functions or modules. This guide serves as an

introduction to the Arduino development environment and provides insight into programming capabilities.

A comprehensive list of all program codes is provided and described on the website "www.arduino.cc" under

the section "Reference".

23

4. Practical guides

4. Practical guides

In the following section, working with the Arduino development environment is explored through practical

examples using predefined hardware.

4.1 A blinking LED

Task: A light-emitting diode (LED) should blink.

Material kit
1x Arduino-Board

O gy iy (W)

(T

On the Arduino microcontroller board, there is
already an LED built into Pin 13 (for testing
purposes). Often, this lamp already blinks when a

new Arduino board is connected, as the blink

program for testing the board may already be
pre-installed depending on the manufacturer. We will now program this blinking ourselves and change the blink

speed.

Circuit:
The LED already present on the board is circled in red in the image. It is only necessary to connect the Arduino

board to the computer via USB cable.

Program section 1 is not needed.

Program section 2, Setup:

For this task, we only need one pin of the microcontroller board, Pin 13. A voltage should be output at Pin 13
because the LED should light up. Therefore, in the setup, it needs to be specified that Pin 13 is an output. The
explanations behind the double slash "//" in gray font may be entered into the Arduino software but do not

affect the execution of the sketch. Commenting out is very useful in programming to leave information about

the program for oneself or simply to jot down ideas.

We write the following sketch directly into the white input field of the Arduino software. Only the bolded
program code on the left side needs to be typed. The "commented out" information about the sketch can be

omitted.

24

4. Practical guides

void setup() //Here begins the setup.
{ //Here begins a program section.
pinMode (13, OUTPUT); //Pin 13 should be an output.

} //Here ends a program section.

void loop() //Here begins the main program.

{ //Here begins a program section.
digitalwWrite(13, HIGH);//Turn on the voltage at Pin 13 (LED on).
delay(1000); //Wait for 1000 milliseconds (one second).
digitalwrite(13, LOW);//Turn off the voltage at Pin 13 (LED off).
delay(1000); //Wait for 1000 milliseconds (one second).
} //Program section ends.

After the last curly brace in the loop section, the sketch is completed. When the sketch is executed from within

the "Loop" by the microcontroller up to the last brace, the sketch

starts again from the beginning of the Loop section. In this example, @oémﬁp
ink.ino

this causes the LED to turn on and off repeatedly.

The sketch should now look exactly as shown in the image on the
right. It just needs to be uploaded to the board now. This can be done

using the button circled in red (top left in the software).

)
2
3
4
5
6
7
8

9
1e
11
12
12

JI Aruine uno - _

void setup() {
pinMode(13, OUTPUT)

4

g

void loop() {
digitalWwrite(13, HIGH);
delay(1ee9);
digitalWrite(13, LOW);
delay(1000);

}

The program can now be varied. For example, if we want the LED to blink faster, we can shorten the delay times

from 1000 milliseconds to 200 milliseconds. The new sketch must now be uploaded to the board again. With

error-free input, the LED will now blink faster.

void setup() //Here begins the setup

{ //Here begins a program section.

pinMode (13, OUTPUT); //Pin 13 should be an output.

} //Here ends a program section.

void loop() //Here begins the main program.

{ //Program section begins.
digitalWrite(13, HIGH); //Turn on the voltage at Pin 13 (LED on)
delay(200); //Wait for 200 milliseconds.
digitalwrite(13, LOW); //Turn off the voltage at Pin 13 (LED off).
delay(200); //Wait for 200 milliseconds.

} //Program section ends.

25

4. Practical guides

4.2 The alternating blinker R T

Task: Two light-emitting diodes (LEDs) should blink alternately. _.::.: ! i % Vs % bbbl

The blink speed and rhythm can be varied.

[Material kit \

1x Arduino-Board
2x LEDs (blue)

2x Resistor 1060 Ohm
1x Breadboard

@mper Cables) e

Sketch:

void setup()

{ //We start with the setup.
pinMode (7, OUTPUT); //Pin 7 is an output.

pinMode (8, OUTPUT); //Pin 8 is an output.

}

void loop()

{ //The main program begins.
digitalwrite(7, HIGH); //Turn on the LED at Pin 7.
delay(1000); //Wait for 1000 milliseconds.
digitalwrite(7, LOW); //Turn off the LED at Pin 7.
digitalwrite(8, HIGH); //Turn on the LED at Pin 8.
delay(1000); //Wait for 1000 milliseconds.
digitalwrite(8, LOW); // Turn off the LED at Pin 8.
} // Here at the end, the program jumps to the start of the Loop

part. So: turn on the LED at Pin 7... etc...

The shorter the "delay", i.e., the pause between the alternating on and off phases of the LEDs, is chosen, the
faster the blinking rhythm will be. The rhythm can be set so fast that the human eye can no longer perceive the
alternating on and off phases. With this sketch, you can model the flashing sequence of emergency vehicles
from various countries. Program this blue light:

Left-Pause-Left-Pause-Left-Pause-Right-Pause-Right-Pause-Right-Pause

26

